A Public Resource Compiled by the

Human and Agriculture Gene Editing:
Regulations and Index

Click on a country (eg. Brazil, US) or region (eg. European Union) below to find which human / health products and processes are approved or in development and their regulatory status.

European Union


New Zealand

United States




United Kingdom












Southeast Asia

Central America




Human / Health Gene Editing Index
Compare Regulatory Restrictions Country-to-Country

Gene editing regulations worldwide are evolving. The Gene Editing Index ratings below represent the current status of gene editing regulations and will be updated as new regulations are passed.

Colors and ratings guide

Regulation StatusRating
Determined: No Unique Regulations*10
Lightly Regulated8
Proposed: No Unique Regulations†6
Ongoing Research, Regulations In Development5
Highly Regulated4
Mostly Prohibited2
Limited Research, No Clear Regulations1
Lightly Regulated: Gene and stem cell therapies regulated with minimal restrictions and requirements.
*Determined: No Unique Regulations: Gene and stem cell therapies regulated as phamaceuticals with no additional restrictions.

†Proposed: No Unique Regulations: Decrees under consideration for gene and stem cell therapies that would not require unique regulations beyond current restrictions on pharmaceuticals.

Gene editing of adult human cells, including gene therapy and stem cell therapy, that is used to treat and cure disease. Recent breakthroughs include CAR T-cell therapy, which uses patients’ own immune cells to treat their cancer.
Gene editing of the human embryo or germline that results in genetic changes that are passed down to the next generation. This type of gene editing is the most controversial because changes are inherited and because it could theoretically be used to create “designer babies”. A Chinese scientist announced in 2018 that he had successfully edited twins that were brought to term. International backlash from the announcement has resulted in China and other countries working to clarify regulations on germline gene editing.

Rating by Country / Region
Click each column header and arrow to sort the countries / regions

Swipe right/left if all columns aren't visible

Country / RegionTherapeuticGermlineHuman Rating
New Zealand402
Central America111
Share via

Pivotal Developments in Gene Editing, 1987-Present

Reprinted with permission from ITIF on Medium

L. Val Giddings, Ph.D.
Senior Fellow, Information Technology & Innovation Foundation

Note: This timeline was last updated on March 10, 2020.

Hardly a day goes by without new reports of advances in gene editing. It can be very hard to keep up, even for those following closely. This compilation brings together a list of salient events and media coverage over the last three decades. It is not complete or encyclopedic, but eclectic, focused primarily on CRISPR, and, we hope, illuminating. It will be updated as developments warrant.

5 March, 2020 Joan Conrow Top European science council demands ‘radical’ GMO regulatory reform https://allianceforscience.cornell.edu/blog/2020/03/top-european-science-council-demands-radical-gmo-regulatory-reform/ and https://t.co/HnfNO9YSzH?amp=1

“A top European science council calling is demanding a “radical reform of the legal framework” that regulates genetically modified organisms (GMOs) in the European Union. In a strongly worded commentary, the European Academies Science Advisory Council (EASAC) said the current EU regulations are “no longer fit for purpose” and warned of serious ramifications if the rules are not eased to allow new plant breeding techniques to move forward.”

4 March, 2020 Alexander Avilov Rosneft Joins Russia’s Gene-Editing Tech Program https://www.themoscowtimes.com/2020/03/04/rosneft-joins-russias-gene-editing-tech-program-a69520

“Russia’s oil giant Rosneft and the Russian government will join forces to develop gene-editing technology, according to a government decree published Wednesday. The deal, which President Vladimir Putin ordered in December, aims to accelerate Russia’s $1.6 billion program to create 30 new varieties of genetically modified crops and animals by 2027.”

4 March, 2020 Jeff Akst First Patient Receives In Vivo CRISPR Editing https://www.the-scientist.com/news-opinion/first-patient-receives-in-vivo-crispr-editing-67222

Doctors in Oregon delivered the gene editing machinery behind the retina in hopes of treating an inherited form of blindness, according to the companies that developed the therapy. https://www.the-scientist.com/news-opinion/first-patient-receives-in-vivo-crispr-editing-67222. “Cambridge, Massachusetts–based Editas Medicine and Dublin-based Allergan announced today (March 4) that doctors at the Casey Eye Institute of Oregon Health & Science University in Portland used CRISPR gene editing inside a patient for the first time. They are attempting to treat an inherited form of blindness called Leber congenital amaurosis, the Associated Press reports. The scientists say they will know within a few weeks if the treatment is working and safe, and plan to test it on additional patients if so.”

4 March, 2020 Oliver Xiaoou Dong, et al. Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9 https://www.nature.com/articles/s41467-020-14981-y. Also Joan Conrow New study shows CRISPR can be applied to produce biofortified rice https://allianceforscience.cornell.edu/blog/2020/03/new-study-shows-crispr-can-be-applied-to-produce-biofortified-rice/

“A team of California plant scientists has taken a CRISPR-Cas9 approach to develop more nutritious varieties of rice. Their research… demonstrated that CRISPR-Cas9 can be successfully used to biofortify rice with carotenoid, a precursor to the essential nutrient vitamin A. Previous research has demonstrated that biofortification of rice can help prevent blindness, weakened immune systems and other health problems associated with vitamin A deficiency, which is especially prevalent among children in developing nations.”

4 March, 2020 In A 1st, Scientists Use Revolutionary Gene-Editing Tool To Edit Inside A Patient https://www.npr.org/sections/health-shots/2020/03/04/811461486/in-a-1st-scientists-use-revolutionary-gene-editing-tool-to-edit-inside-a-patient

“For the first time, scientists have used the gene-editing technique CRISPR to try to edit a gene while the DNA is still inside a person’s body. The groundbreaking procedure involved injecting the microscopic gene-editing tool into the eye of a patient blinded by a rare genetic disorder, in hopes of enabling the volunteer to see. They hope to know within weeks whether the approach is working and, if so, to know within two or three months how much vision will be restored.”

3 March Krishna Ramanujan Improved CRISPR gene drive solves problems of old tech https://news.cornell.edu/stories/2020/03/improved-crispr-gene-drive-solves-problems-old-tech#.XmJRq506PwQ.twitter

“Gene drives use genetic engineering to create a desired mutation in a few individuals that then spreads via mating throughout a population in fewer than 10 generations… Now, a study… describes a new type of gene drive with the potential to delay resistance. The method could also be applied to a regional population, limiting its spread other populations where it could have undesired effects.”

21 February Ariella Simke You May Find Salt-Tolerant Rice Growing In The Ocean By 2021 https://www.forbes.com/sites/ariellasimke/2020/02/21/you-may-find-salt-tolerant-rice-growing-in-the-ocean-by-2021/?subId1=xid:fr1582662210931gjd#608745534133

“A company started by two 24-year-old scientists wants to produce salt-tolerant rice and floating ocean farms by 2021, with small pilot farms by the end of 2020.”

7 February, 2020 Nature BioTechnology Editors Course Correction https://www.nature.com/articles/s41587-020-0433-3Nature Biotechnology volume 38, page113(2020).

“The US Food and Drug Administration is sticking to its plan to carry out mandatory premarket review of all gene-edited livestock, irrespective of trait risk. It should rethink.”

6 February, 2020 Ed Cara U.S. Trial finds CRISPR-edited cells are safe in cancer patients https://gizmodo.com/u-s-trial-finds-crispr-edited-cells-are-safe-in-cancer-1841495203?utm_medium=sharefromsite&utm_source=gizmodo_twitter.

“researchers say they’ve shown that CRISPR-edited immune cells can be safely given to cancer patients and survive for up to nine months — a finding that may signal CRISPR’s future as part of an emerging cancer treatment known as immunotherapy.”

5 February, 2020 Hannah Kuchler CRISPR pioneer Jennifer Doudna opposes germline-editing moratorium: ‘We’re going to have to figure it out’ https://www.ft.com/content/6d063e48-4359-11ea-abea-0c7a29cd66fe.

“In November 2018, Doudna received an email from Chinese scientist He Jiankui, saying he planned to announce the birth of Crispr-edited twins at an upcoming conference in Hong Kong. The children were engineered without the knowledge of the international scientific community, whose leading members — among them Doudna — had been pressing for a moratorium on germline editing. Doudna declined to sign another call for a moratorium after the revelation of the Chinese babies, saying that there needs instead to be appropriate regulation of gene editing. In A Crack in Creation, a book she co-authored in 2017, she wondered whether we would ever have the intellectual and moral capacity to make decisions about germline editing. I ask if she still feels that way. “I would say my feeling today is that, like it or not, we’re going to have to figure it out,” she says.”

4 February, 2020 Sara Reardon Step aside CRISPR, RNA editing is taking off — Making changes to the molecular messengers that create proteins might offer flexible therapies for cancer, pain or high cholesterol, in addition to genetic disorders. https://www.nature.com/articles/d41586-020-00272-5.

“Thorsten Stafforst found his big break at the worst possible time. In 2012, his team at the University of Tübingen… discovered that by linking enzymes to engineered strands of RNA, they could change the sequences of messenger RNA molecules in cells. In essence, they could rewrite the genome’s instructions en route to making proteins. The process could theoretically serve to treat numerous diseases… But Stafforst had a lot of trouble getting the discovery published — it was simply not interesting any more. His finding was overshadowed by the discovery a few months earlier that the DNA-editing tool CRISPR–Cas9 could be used to permanently alter the genome.”

4 February, 2020 National Agricultural Technology Institute Field trials of non-browning CRISPR-edited potatoes begin in Argentina https://geneticliteracyproject.org/2020/02/04/field-trials-of-non-browning-crispr-edited-potatoes-begin-in-argentina/.

“In a study published recently in the Frontiers in Plant Science magazine, scientists from Argentina and Sweden reported they have edited a polyphenol oxidase gene in potatoes ( Solanum tubersoum L.). After successfully editing the gene, they obtained tubers free of enzymatic browning.”

4 February, 2020 Arthur Neslen, Eddy Wax, Louise Guillot Leaked proposals suggest EU may assess CRISPR gene editing to ‘improve sustainability’ of food production https://geneticliteracyproject.org/2020/02/04/leaked-proposals-suggest-eu-may-assess-crispr-gene-editing-to-improve-sustainability-of-food-production/.

“More leaked drafts of the Farm to Fork (F2F) strategy reveal how the [European] Commission’s plan to make EU food production greener and healthier is taking shape. There are far fewer policy proposals in these two draft action plans, both dated January 13, suggesting the plan has undergone some serious redrafting by Commission wonks since an earlier, more wide-ranging document, dated January 6, floated 95 policies.”

31 January, 2020 Peter Beetham How Gene Editing is Reshaping Agriculture https://seedworld.com/how-gene-editing-is-reshaping-agriculture/.

“With gene editing comes a new model of how crops are improved and produced, who produces the plants, and how they will be introduced to farmers and importantly how plant breeding can quickly respond to change including arming crops with traits to combat our changing climate. The changes coming to agriculture will be as profound as the original marriage of agriculture and genetics, but this revolution represents a return to the way plants adapt in nature. “

31 January, 2020 David Warmflash The real sustainability revolution in farming rests with CRISPR and other New Breeding Techniques. Why are organic farmers blocked from using them? https://geneticliteracyproject.org/2020/01/31/the-real-sustainability-revolution-in-farming-rests-with-crispr-and-other-new-breeding-techniques-why-are-organic-farmers-blocked-from-using-them/.

“[Gene edited] …crops, however, cannot be sold as organic. That status is defined by organic authorities and in most cases is not related to how things are grown, nor to whether the crop is produced sustainably. Indeed, in some cases, crops developed through NBTs can be grown with less potentially harmful inputs than those granted organic status. This disconnect between sustainability and organic certification is likely to persist in the foreseeable future because the standards that are used to designate which farm products receive an organic seal are based on, or at least influenced strongly, by ideological forces. The main such force in this case, promoted by organic authorities, is a belief that classic organic techniques are more environmentally sensitive than newer techniques, which they claim are untested and potentially dangerous.

30 January 2020 Fyodor D. Urnov Prime Time for Genome Editing? N Engl J Med 2020; 382:481–484 DOI: 10.1056/NEJMcibr1914271 https://www.nejm.org/doi/full/10.1056/NEJMcibr1914271.

“Protein engineering has yielded a new, potent tool — in the form of a chimeric enzyme — for correcting genetic mutations. Proof of principle that this enzyme can correct different types of mutation, and even combinations of mutations, has been obtained in different types of mammalian cells…”

30 January, 2020 Arizona State University ASU scientists boost gene-editing tools to new heights in human stem cells — Proof-of-concept shows genes implicated in Alzheimer’s disease can be accurately edited with 90% efficiency in human stem cells. https://phys.org/news/2020-01-scientists-boost-gene-editing-tools-heights.html.

“… Brafman, using a new update to the CRISPR base editing technology… has vastly outperformed previous efforts by making highly accurate, single-DNA base editing with an efficiency of up to 90% of human stem cells. The results were published in the journal Stem Cell Reports

29 January, 2020 Xiaoli Liu, Xiujuan Zhou, Kang Li, et al. A simple and efficient cloning system for CRISPR/Cas9-mediated genome editing in rice https://peerj.com/articles/8491/ & http://www.isaaa.org/kc/cropbiotechupdate/article/default.asp?ID=17960#.XjrmlZyZ3TY.twitter.

“Scientists from Hainan University and Huazhong Agricultural University developed a simple and efficient cloning method for CRISPR-Cas9-mediated genome editing in rice. The results are published in PeerJ Life and Environment.”

29 January 2020 ISAAA Study Reveals Experts’ and Public’s Attitude Towards Gene-edited Crops http://www.isaaa.org/kc/cropbiotechupdate/article/default.asp?ID=17938#.XjF6DU6qXGk.twitter.

“A team of Japanese researchers… surveyed perceptions of Japanese experts and the public of the benefits, risks, and value of using gene editing for developing crops compared to other emerging or conventional breeding techniques in Japan… [finding] participants who had expert knowledge of molecular biology perceived emerging technologies to offer the lowest risk and highest benefits or value for food application, while lay public showed the highest risk and lowest benefit.”

23 January 2020 Seth Truscott Disabling viruses with CRISPR scissors https://news.wsu.edu/2020/01/23/disabling-viruses-crispr-scissors/.

“Viruses cause billions of dollars in losses for many food, feed, and fiber crops, including staples like wheat, rice, potatoes, cassava, beans, and plantains. In a scientific first, Washington State University researchers delivered a one-two punch to knock out these viruses, using precise, targeted editing of viral genes. Popularly known as CRISPR-Cas9, this genome editing approach can delete and replace individual bases in DNA.”

22 January, 2020 Mark Terry Newly ID’ed T-Cells Have Potential to Become Universal Cancer Therapy https://www.biospace.com/article/researchers-id-immune-cell-that-can-attack-almost-all-cancer-cells/ & https://www.nature.com/articles/s41590-019-0578-8.epdf?referrer_access_token=snY5ZB-EgcG5gMxu6h5BxdRgN0jAjWel9jnR3ZoTv0NjOoBZR7tEtwlsa1xeSU1tSn9OqKp9tJ7vTk8p7vCmAU4NZd5dS3BIALSEUtLFcpomMuKDUbEnW8GutXD_HuOev_ekvAEfzAa2kC03oyp2SuhBvB2N5K9feGAqhcKqIKgZC2OWk5VF1AgHIU4VXmKYeN0eWdmTgIw5Jb227ILGMg%3D%3D&tracking_referrer=www.bbc.com

“The researchers essentially identified a new T-cell and its receptor that appears able to search out and kill a broad range of cancer cells, including lung, skin, blood, colon, breast, bone, prostate, ovarian, kidney and cervical cancer cells. It left noncancerous cells alone. “There’s a chance here to treat every patient,” Andrew Sewell, professor, Division of Infection and Immunity, School of Medicine at Cardiff, told the BBC. “Previously nobody believed this could be possible. It raises the prospect of a ‘one-size-fits-all’ cancer treatment, a single type of T-cell that could be capable of destroying many different types of cancers across the population.” The T-cell they identified interacts with a cell surface molecule, MR1. MR1 is believed to flag the abnormal metabolism inside a cancer cell.

22 January 2020 Flora Southey Vertical farms of the future require genetically edited plants, says scientist. https://www.foodnavigator.com/Article/2020/01/22/Vertical-farms-of-the-future-require-genetically-edited-plants-says-scientist

“There is an innovation gap in urban agriculture, suggests Aberystwyth University Professor Huw Jones, whereby we have ‘huge innovation’ in vertical farming, yet still use ‘old seeds’ and ‘old plant architecture’.”

20 January 2020 Michael Le Page CRISPR-edited chickens made resistant to a common virus https://www.newscientist.com/article/2230617-crispr-edited-chickens-made-resistant-to-a-common-virus/.

“CRISPR genome editing has been used to make chickens resistant to a common virus. The approach could boost egg and meat production worldwide while improving welfare. The altered chickens showed no signs of disease even when exposed to high doses of the avian leukosis virus (ALV). The virus is a problem for poultry farmers around the world, says Jiri Hejnar at the Czech Academy of Sciences.”

17 January 2020 Elie Dolgin The kill-switch for CRISPR that could make gene-editing safer — How anti-CRISPR proteins and other molecules could bolster biosecurity and improve medical treatments https://www.nature.com/articles/d41586-020-00053-0?utm_source=twt_nnc&utm_medium=social&utm_campaign=naturenews&sf228283173=1.

“[researchers] …stumbled onto tools now known as anti-CRISPRs. These proteins serve as the rocks to CRISPR’s molecular scissors… more than 50 anti-CRISPR proteins have now been characterized, each with its own means of blocking the cut-and-paste action of CRISPR systems. The expansive roster opens up many questions about the archaic arms race between bacteria and the phages that prey on them. But it also provides scientists with a toolkit for keeping gene editing in check. Some are using these proteins as switches to more finely control the activity of CRISPR systems in gene-editing applications for biotechnology or medicine. Others are testing whether they, or other CRISPR-stopping molecules, could serve as biosecurity counter-measures of last resort, capable of reining in some genome-edited bioweapon or out-of-control gene drive.”

See expanded timeline on CRISPR babies here.

13 January 2020 EuroSeeds 26 business organizations support a Commission study on “novel genomic techniques” and express their hope for more enabling regulations https://www.euroseeds.eu/news/update-26-european-business-organisations-ask-the-eu-to-submit-a-study-on-the-status-of-novel-genomic-techniques/.

On 9 January, 26 European business organisations jointly signed a letter calling upon the European Commission and Member States to re-emphasize that products obtained by novel genomic techniques should not be subject to Directive 2001/18 requirements and related regulations if they could also have been obtained through conventional methods or result from spontaneous processes in nature. The organizations support the Council Decision (EU) 2019/1904 requesting the Commission to submit a study on the status of novel genomic techniques and welcome the potential for a Commission proposal, which they hope will deliver more enabling rules for products resulting from the latest breeding methods, while keeping high standards of EU food production.”

9 January Global Scientists Object: EC study on the status of novel genomic techniques — Scientists open letter challenge European Commission to develop scientifically defensible regulations for gene edited products https://www.euroseeds.eu/app/uploads/2020/01/Draft-value-chain-letter-to-new-Comm-18-12-2019.pdf

“The undersigned value chain partners strongly support Council Decision (EU) 2019/1904 requesting the Commission to submit a study on the status of novel genomic techniques1 and welcome the potential for a Commission proposal, which we hope will deliver more enabling rules for products resulting from the latest breeding methods, while keeping high standards of EU food production. In this context we would like to re-emphasize our position that products should not be subject to Directive 2001/18 requirements and related regulations if they could also have been obtained through conventional methods or result from spontaneous processes in nature. This differentiated regulatory approach, which looks at both, the process and the product, thus taking into account the benefits of these novel genomic techniques and the resulting products is taken up in a growing number of countries around the world.”

7 January 2020 Jenna Gallegos CRISPR: Overcoming its obstacles in plant research https://allianceforscience.cornell.edu/blog/2020/01/crispr-overcoming-its-obstacles-in-plant-research/.

“CRISPR is an extremely powerful gene editing tool that has already made huge waves in plant research. We can potentially use CRISPR to make hardier crops, engineer produce in ways that directly benefit consumers and address climate change. But while CRISPR is often described as “cut and paste” for genes, the actual process is not that simple. Scientists still face several obstacles associated with using CRISPR in plant research, including regulatory hurdles.”

30 December Zaobao.com He Jiankui illegally edits human embryo genes, sentenced to three years in prison https://www.zaobao.com.sg/realtime/china/story20191230-1017060.

“The “gene-edited baby” case was publicly sentenced in the first instance of the Nanshan District People’s Court in Shenzhen today. The three defendants, He Jiankui, Zhang Renli, and Qin Jinzhou, jointly executed the human embryo gene editing and reproductive medical activities for reproductive purposes, which constituted the crime of illegal medical practice, and were each held criminally responsible according to law… He Jiankui was sentenced to three years’ imprisonment and a fine of 3 million yuan (RMB, the same below, about S $ 600,000)… and barred [him] from engaging in human assisted reproductive technology services for life.”

23 December Cold Spring Harbor Laboratory A new tomato ideal for urban gardens and even outer space https://phys.org/news/2019-12-tomato-ideal-urban-gardens-outer.html.

“Farmers could soon be growing tomatoes bunched like grapes in a storage unit, on the roof of a skyscraper, or even in space. That’s if a clutch of new gene-edited crops prove as fruitful as the first batch.”

23 December Siobhán Dunphy Can gene-edited pigs remedy the global shortage of human organs? https://www.europeanscientist.com/en/public-health/can-gene-edited-pigs-remedy-the-global-shortage-of-human-organs/.

“Scientists have used CRISPR technology to develop a new generation of gene-edited pigs that may one day provide much-needed donor organs for people. The genetically engineered animals are described in a new paper published on 19 December in BioRxiv (1). So-called xenotransplantation — the use of non-human organs for transplant, in this case, pigs — could provide a viable alternative to human donor shortages, thanks to genetic engineering. Pigs are widely consumed around the world, so breeding them for replacement body parts presents much less of a moral dilemma than other animals with organs similar to humans, like say monkeys. Pigs also reach adulthood in just six short months and the anatomy of pig organs are quite close to those of human organs.

17 December Jenna Gallegos Five ways CRISPR plants can combat climate change https://allianceforscience.cornell.edu/blog/2019/12/five-ways-crispr-plants-can-combat-climate-change/.

“Here are five ways CRISPR can be used to engineer hardier crops that fix more carbon and help to reduce greenhouse gas emissions related to agriculture…”

16 December Innovature Gene Editing Can Protect Your Favorite Cookies https://innovature.com/article/gene-editing-can-protect-your-favorite-cookies?utm_source=Twitter&utm_medium=Social_Paid&utm_campaign=2019_Innovature&utm_term=COMP&utm_content=Holiday_Cookies.

“The cookie’s many names — biscuits, rusks, wafers, galletas — show that our love for these sweet treats transcends geographic bounds. However, a changing climate and spreading pests and diseases pose a risk to cookie jars all over the world. Bakers and cookie lovers can rest easy, though, because there’s a solution within reach: gene editing. By making small changes to crops’ DNA, scientists can improve the key ingredients in our favorite cookies to withstand more risks than ever before. These changes can help crops protect themselves against rising temperatures, as well as pests and diseases. Here are five cookies that gene editing could improve…”

16 December University of Minnesota Research Brief: New methods promise to speed up development of new plant varieties https://twin-cities.umn.edu/news-events/research-brief-new-methods-promise-speed-development-new-plant-varieties.

“A University of Minnesota research team recently developed new methods that will make it significantly faster to produce gene-edited plants. They hope to alleviate a long-standing bottleneck in gene editing and, in the process, make it easier and faster to develop and test new crop varieties with two new approaches described in a paper recently published in Nature Biotechnology… The new methods will: drastically reduce the time needed to edit plant genes from as long as nine months to as short as a few weeks; work in more plant species than was possible using tissue culture, which is limited to specific species and varieties; allow researchers to produce genetically edited plants without the need of a sterile lab, making it a viable approach for small labs and companies to utilize. To eliminate the arduous work that goes into gene-editing through tissue culture, co-first authors Ryan Nasti and Michael Maher developed new methods that leverage important plant growth regulators responsible for plant development.”

13 December Xingming Hu, et al. Using CRISPR-Cas9 to generate semi-dwarf rice lines in elite landraces https://www.nature.com/articles/s41598-019-55757-9.

“…Expanding the genetic diversity among Chinese rice varieties and cultivating high-yielding and high-quality varieties with resistance to different biotic and abiotic stresses is critical. Here, we used the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein9(Cas9) genome editing system to edit Semi-Dwarf1 (SD1) in the elite landraces Kasalath and TeTePu (TTP), which contain many desired agronomic traits such as tolerance to low phosphorous and broad-spectrum resistance to several diseases and insects. Mutations of SD1 confer shorter plant height for better resistance to lodging. Field trials demonstrated that the yield of the new Kasalath and TTP mutant lines was better than that of the wild type under modern cultivation and that the lines maintained the same desirable agronomic characteristics as their wild-type progenitors. Our results showed that breeding using available landraces in combination with genomic data of different landraces and gene-editing techniques is an effective way to relieve genetic erosion in modern rice varieties.”

11 December Charlie Arnot Gene Editing: It’s an Evolution, not a Revolution https://www.fb.org/viewpoints/gene-editing-its-an-evolution-not-a-revolution.

“The Coalition for Responsible Gene Editing in Agriculture… analyzed consumer research about communicating about biotechnology and they discovered that some methods of communicating are more effective than others. One discovery was that talking about the evolution of gene editing technology — instead of describing it as a revolution — helped people to understand it better… However, talking about how science can “revolutionize” food production does not resonate with consumers. The public is more supportive when gene editing is described within the context of plant and animal genetic improvement, which has a legacy of safe, responsible use spanning several generations. Rather than being a revolutionary technique, consumers are more comfortable when gene editing is approached as an evolution of the next iteration of improvement. It’s also helpful to identify the way gene editing can benefit consumers directly while aligning with public desires. The top three gene editing benefits that consumers care about most are the environment, disease resistance and animal wellbeing.”

11 December Maria Chaplia Viewpoint: With Conservative sweep of the ‘Brexit election’, Boris Johnson poised to steer the UK out of ‘outdated’ EU GMO, CRISPR regulations https://geneticliteracyproject.org/2019/12/11/viewpoint-with-conservative-sweep-of-the-brexit-election-boris-johnson-poised-to-steer-the-uk-out-of-outdated-eu-gmo-crispr-regulations/.

In the wake of the Conservative Party’s crushing victory in the election in the United Kingdom, Prime Minister Boris Johnson is poised to navigate Britain’s exit from the European Union. Once out of the EU, the UK could regain full control over its laws and regulations. And that might open the door to a reversal on what scientists consider its backward-looking policies on GMOs and CRISPR gene editing in agriculture.”

5 December Natasha Foote EU study to clarify gene editing court ruling further muddies waters https://www.euractiv.com/section/agriculture-food/news/eu-study-to-clarify-gene-editing-court-ruling-further-muddies-waters/?utm_term=Autofeed&utm_medium=social&utm_source=Twitter#Echobox=1575559196.

“After the controversial European Court of Justice (ECJ) ruling in 2018 that organisms obtained by new plant breeding techniques (NBTs) should, in principle, fall under the GMO Directive, the Council of the EU has requested a study from the Commission to clarify the situation. But what this means in practice remains unclear, stakeholders have told EURACTIV. Speaking at a recent event on NBTs, Jari Leppä, Finnish agriculture minister and current president of the EU agri-fish council, confirmed the Council had requested a study on the “options to update the existing legislation”. He added that “if necessary, the Commission must be prepared to submit a proposal to amend the GMO directive”. But the exact purpose and aim of the request are not immediately clear.”

5 December Guan Yu Lim Genome-edited food products to go on sale in Japan, despite no labelling and safety provisions https://www.foodnavigator-asia.com/Article/2019/12/05/Genome-edited-food-products-to-go-on-sale-in-Japan-despite-no-labelling-and-safety-provisions.

“Food products produced using genome editing technology could go on sale in Japan by the end of the year despite no specific labelling rules being in place.”

4 December Michael Irving Genetically-engineered yeast produce beer that staves off staleness https://newatlas.com/science/genetically-engineered-yeast-beer-fresh/.

“…researchers from Jiangnan University have found a way to keep beer fresher for longer, by genetically engineering lager yeast to produce certain compounds that prevent staleness.”

4 December German National Academy of Sciences Leopoldina, Union of the German Academies of Sciences, and Humanities German Research Foundation “Towards a scientifically justified, differentiated regulation of genome edited plants in the EU” https://www.leopoldina.org/en/publications/detailview/publication/wege-zu-einer-wissenschaftlich-begruendeten-differenzierten-regulierung-genomeditierter-pflanzen-in/.

“In July 2018, the European Court of Justice ruled that the legal regulations for genetically modified organisms (GMOs) apply to all organisms which have been altered using genome editing methods such as CRISPR-Cas. This makes it difficult to study, develop and cultivate improved crops which are urgently needed for productive, climate-adapted and more sustainable agriculture. The National Academy of Sciences Leopoldina, the Union of the German Academies of Sciences and Humanities, and the German Research Foundation (DFG)… point out that this blanket legal classification of GMOs does not take into account what type of genetic modification is present in a given organism. In the eyes of the science academies and the DFG, this primarily process-based regulatory approach has no rational justification. They have offered recommendations on how European genetic engineering legislation can be amended as a short-term solution and completely renewed in the long term.”

4 December Vytenis Andriukaitis Andriukaitis: Europe should take lead in science-based plant innovation https://www.euractiv.com/section/agriculture-food/opinion/andriukaitis-europe-should-take-lead-in-science-based-plant-innovation

“The EU is leading the science-based fight against climate change and will also lead on science-based plant innovation, writes former EU Health Commissioner Vytenis Andriukaitis… Plant breeding has been practiced by humans since almost the beginning of our civilisation. We have been experimenting with different species and plant varieties, with some impressive results. We bred corn from teosinte and strawberries from wild berries. Natural selection and artificial methods have been used to create desired mutations and get an improved breed. Now, we found a faster way to breed, mix and produce better varieties — via gene engineering. This could sound like a success story, right? Alas, a tide of suspicion and fear pushed these innovations outside the EU.”

2 December Manuel V. Borca, Elizabeth R. Edina, Ediane Silva, et al. Development of a highly effective African swine fever virus vaccine by deletion of the I177L gene results in sterile immunity against the current epidemic Eurasia strain doi: https://doi.org/10.1101/861666 .

“ Currently there is no commercially available vaccine against African swine fever. Outbreaks of this disease are devastating the swine industry from Central Europe to East Asia, and they are being caused by circulating strains of African swine fever virus derived from the Georgia2007 isolate. Here we report the discovery of a previously uncharacterized virus gene, which when deleted completely attenuates the Georgia isolate. Importantly, animals infected with this genetically modified virus were protected from developing ASF after challenge with the virulent parental virus.”

2 December Michael Eisenstein CRISPR Vehicles Break Down Barriers to In Vivo Genome Editing — Delivery options for CRISPR gene editing components include viral vectors, lipid-based nanoparticles, and polymer formulations https://www.genengnews.com/insights/crispr-vehicles-break-down-barriers-to-in-vivo-genome-editing/.

“This past July saw a big leap forward for clinical application of CRISPR-based genome editing, with the launch of the Brilliance trial by Allergan and Editas Medicine. Previous clinical forays into genome editing have focused on manipulating isolated human cells in the laboratory, which are then transplanted back into patients. In contrast, Brilliance will be the first in vivo test of this technology in humans, with patients receiving direct injections of viral particles laden with genes encoding the CRISPR-Cas9 machinery to correct a retinal gene defect.”

1 December Ruth Williams DNA-responsive polymer gels used for releasing drugs, encapsulating cells, and much more now have greater adaptability thanks to the Cas12a nuclease https://www.the-scientist.com/modus-operandi/crispr-based-tool-expands-dna-hydrogel-versatility-66751?utm_content=110496346&utm_medium=social&utm_source=twitter&hss_channel=tw-18198832.

“…the team created DNA-containing hydrogels that, in response to a dsDNA cue provided by the researchers, could either release DNA-bound compounds or fully degrade. Such degradation could be used for applications such as liberating encapsulated contents like cells or nanoparticles, initiating flow of a buffer through a microfluidic device, or opening an electrical circuit. These last two examples could potentially be used in diagnostic devices, says Collins, with a change in buffer flow or electrical output signaling the presence of a DNA sequence of interest in a patient sample. “They showed some really novel applications of responsive hydrogels,” says Rebecca Schulman, a chemical and biomolecular engineer at Johns Hopkins University… “Their approach is totally customizable . . . [and] is really cleverly designed,” adds bio-engineer Dan Luo of Cornell University… “It’s a real integration of molecular biology and materials science.” (Science, 365:780–85, 2019).

November, 2019 RimLassoued, Diego Maximiliano Macall, Stuart J.Smyth, Peter W.B.Phillips, HayleyHesseln Risk and safety considerations of genome edited crops: Expert opinion Current Research in Biotechnology 1:11–21 https://doi.org/10.1016/j.crbiot.2019.08.001 https://www.sciencedirect.com/science/article/pii/S2590262819300024

“Highlights: Genome edited crops pose marginal risk to the economy, human health and the environment; Existing national regulations work to discourage genome editing in many countries; Advocacy groups tend to discourage the use of new gene technologies in agriculture based on speculative risks; Risks associated with genome editing are driven more by socio-political factors than by scientific principles; Majority of experts are for inclusion of social-economic considerations in the regulation of biotechnology.”

21 November Ag News Gene editing delivers 15–16% protein sorghum http://news.agropages.com/News/Detail-32959.htm

“Researchers have achieved a major breakthrough in sorghum, elevating the protein of the globally important cereal crop from 9–10 per cent to a staggering 15–16pc. The breakthrough was revealed by Professor Ian Godwin (pictured) at the TropAg 2019 conference in Brisbane, following research carried out by the Queensland Alliance for Agriculture and Food Innovation. The development has the poultry and pigs industries particularly excited, as well as beef feedlots. The increase in protein is expected to result in about a 50c/head reduction in the cost of producing a 2kg meat bird. The breakthrough is also expected to generate big interest in the 46 Sub-Saharan African countries, where an estimated 500 million people rely on sorghum as a food source.”

20 November Human germline editing needs one message — Science academies and the World Health Organization must act in unison. https://www.nature.com/articles/d41586-019-03525-0.

“In 2018, the World Health Organization (WHO) set up an independent expert panel to advise on the oversight and governance of human genome editing. A separate international commission on the clinical use of human germline genome editing gathered for its second meeting in London last week. This commission was established by the US National Academy of Science, the US National Academy of Medicine and Britain’s Royal Society, to recommend standards and criteria for germline genome editing. Both will report next year, and the commission’s report will feed into the WHO process. But the WHO panel has already recommended setting up a public registry for genome-editing experiments. It has also made an interim recommendation that “it would be irresponsible at this time for anyone to proceed with clinical applications of human germline genome editing”, which has been accepted by the agency’s leadership. The international commission has yet to say what it thinks, but it would make little sense for it to disagree. It isn’t entirely clear why separate initiatives are needed, and it is unfortunate that representatives of people with disabilities are not part of the decision-making process. However, it isn’t too late to rectify these issues, and the two initiatives must, in the end, converge.”

15 November Jennifer Doudna CRISPR’s unwanted anniversary https://science.sciencemag.org/content/366/6467/777.

“There are key moments in the history of every disruptive technology that can make or break its public perception and acceptance. For CRISPR-based genome editing, such a moment occurred 1 year ago — an unsettling push into an era that will test how society decides to use this revolutionary technology. In November 2018, at the Second International Summit on Human Genome Editing in Hong Kong, scientist He Jiankui announced that he had broken the basic medical mantra of “do no harm” by using CRISPR-Cas9 to edit the genomes of two human embryos in the hope of protecting the twin girls from HIV. His risky and medically unnecessary work stunned the world and defied prior calls by my colleagues and me, and by the U.S. National Academies of Sciences and of Medicine, for an effective moratorium on human germline editing. It was a shocking reminder of the scientific and ethical challenges raised by this powerful technology. Once the details of He’s work were revealed, it became clear that although human embryo editing is relatively easy to achieve, it is difficult to do well and with responsibility for lifelong health outcomes.”

14 November Sean Pratt CropLife [Canada] calls for clarity on gene-editing regulations https://www.producer.com/2019/11/croplife-calls-for-clarity-on-gene-editing-regulations/.

Canada is falling behind other jurisdictions in providing clarity on how it will regulate new crop varieties developed through gene editing techniques such as CRISPR, says CropLife Canada. Japan’s consumer affairs agency recently decided it will not require special labelling for products created through the new breeding technique because it does not require the introduction of foreign DNA. Japan joins a growing list of countries such as the United States, Australia, Argentina and Chile that do not plan to give any extra scrutiny to new traits resulting from gene editing.”

14 November United Nations Food & Agriculture Organization CRISPR Technology and Its Potential to Transform Agriculture http://www.fao.org/webcast/home/en/item/5136/icode/.

“A panel discussion on CRISPR technology and its potential to transform agricultural production, sponsored by the U.S. Mission to the UN Agencies and the U.S. Embassy to the Holy See. Panelists: Dr. Brian Staskawicz, Scientific Director of Agricultural Genomics, Innovative Genomics Institute, University of California Berkeley; Dr. Matin Qaim, Professor of International Food Economics and Rural Development, University of Goettingen; Dr. Clint Nesbitt, Senior Director of Science and Regulatory Affairs, Food and Agricultural Section, Biotechnology Innovation Organization.”

11 November Randall J. Platt CRISPR tool modifies genes precisely by copying RNA into the genome -The ultimate goal of genome editing is to be able to make any specific change to the blueprint of life. A ‘search-and-replace’ method for genome editing takes us a giant leap closer to this ambitious goal. https://www.nature.com/articles/d41586-019-03392-9.

“Writing in Nature, Anzalone et al.1 describe ‘search-and-replace’ genome editing, in which the marriage of two molecular machines enables the genome to be altered precisely. The technique has immediate and profound implications for the biomedical sciences.”

7 November Cormac Sheridan Gene editing enters ‘prime’ time — Early results suggest that prime editors are cleaner than CRISPR–Cas9 and more versatile than base editors, but many questions remain https://www.nature.com/articles/d41587-019-00032-5.

“A paper recently published in Nature from David Liu and co-workers discloses a ‘prime’ gene-editing system many years in the making. The prime system may have fewer undesirable off-target effects than editing with CRISPR–Cas9… In principle, the system, comprising a catalytically impaired Cas9 enzyme and an engineered reverse transcriptase, may be able to address ~89% of the human genetic variants known to be pathogenic. Already, it has been snapped up as the key founding intellectual property for Cambridge, Massachusetts-based startup Prime Medicine… Prime editing is still a nascent, albeit highly promising, technology. Demonstrating its feasibility in a wide range of cells and tissues will be key to its future development.”

28 October: Ricardo Oliva, Chonghui Ji, Genelou Atienza-Grande et al. Broad-spectrum resistance to bacterial blight in rice using genome editing Nature BioTechnology DOI https://doi.org/10.1038/s41587-019-0267-z.

“Bacterial blight of rice is an important disease in Asia and Africa…[caused by] the pathogen, Xanthomonas oryzae pv. oryzae (Xoo)… Paddy trials showed that [CRISPR] genome-edited [changes] …endow rice lines with robust, broad-spectrum resistance.”

28 October: Knvul Sheikh Is Crispr the Next Antibiotic? In nature, the gene-editing tool Crispr protects bacteria against viruses. Now it’s being harnessed in the fight against superbugs and the flu. https://www.nytimes.com/2019/10/28/health/crispr-genetics-antibiotic-resistance.html?smid=tw-nytimesscience&smtyp=cur.

“Desperate to find new medicines against pathogenic microorganisms, scientists are turning to Crispr, the gene-editing tool. Crispr has typically been considered for macroscopic tasks: altering mosquitoes so they can’t spread malaria, editing tomatoes so they are more flavorful and curing certain genetic diseases in humans. Now researchers are harnessing Crispr to turn a bacterium’s machinery against itself, or against viruses that infect human cells. “Crispr is the next step in antimicrobial therapy,” said David Edgell, a biologist at the Western University in London, Ontario, and the lead author of a study published earlier this month in Nature Communications.”

21 October Andrew V. Anzalone, Peyton B. Randolph, Jessie R. Davis, et al. Search-and-replace genome editing without double-strand breaks or donor DNA Nature volume 576, pages149–157(2019) https://www.nature.com/articles/s41586-019-1711-4.

“Most genetic variants that contribute to disease1 are challenging to correct efficiently and without excess byproducts. Here we describe prime editing, a versatile and precise genome editing method that directly writes new genetic information into a specified DNA site… We performed more than 175 edits in human cells, including targeted insertions, deletions, and all 12 types of point mutation, without requiring double-strand breaks or donor DNA templates. We used prime editing in human cells to correct, efficiently and with few byproducts, the primary genetic causes of sickle cell disease (requiring a transversion in HBB) and Tay–Sachs disease (requiring a deletion in HEXA); to install a protective transversion in PRNP; and to insert various tags and epitopes precisely into target loci.”

21 October: Jon Cohen New ‘prime’ genome editor could surpass CRISPR https://www.sciencemag.org/news/2019/10/new-prime-genome-editor-could-surpass-crispr.

“CRISPR, an extraordinarily powerful genome-editing tool invented in 2012, can still be clumsy. It sometimes changes genes it shouldn’t, and it edits by hacking through both strands of DNA’s double helix, leaving the cell to clean up the mess — shortcomings that limit its use in basic research and agriculture and pose safety risks in medicine. But a new entrant in the race to refine CRISPR promises to steer around some of its biggest faults. “It’s a huge step in the right direction,” chemist George Church, a CRISPR pioneer at Harvard University, says about the work, which appears online today in Nature. This newfangled CRISPR, dubbed “prime editing,” could make it possible to insert or delete specific sequences at genome targets with less collateral damage. “Prime editors offer more targeting flexibility and greater editing precision,” says David Liu, a chemist at the Broad Institute in Cambridge, Massachusetts, whose lab led the new study and earlier invented a popular CRISPR refinement called base editing.”

19 October: Uma Keni Prabhu ‘Agri biotech can help unleash second Green Revolution’ https://www.sundayguardianlive.com/news/agri-biotech-can-help-unleash-second-green-revolution.

“NEW DELHI: “The new technologies have opened up doors and we should use these to be able to produce food needed by 8.2 billion people in future,” said Nobel Laureate Norman Earnest Borlaug, adding that “good public sector supported programs in biotechnology, linked with genetics and breeding are called for”… Emerging technologies like gene editing have immense capacity to address the various challenges in the agriculture and allied sectors. India should, therefore, chart out a well-defined and actionable roadmap urgently for harnessing the potential of these biotechnologies to arrest the growing distress in its farm sector, the report recommends unequivocally.”

18 October: Damian Garde & Adam Feuerstein The ‘unbelievable journey’ of CRISPR — now on Netflix https://www.statnews.com/2019/10/18/crispr-new-netflix-docuseries/.

“Mankind’s ability to edit the fabric of human life has led to scientific upheaval, global debate, and at least one international incident. Now, it’s coming to Netflix. “Unnatural Selection,” a four-part docuseries debuting Friday, dissects the stories, science, and ethics behind genome editing, following academics, biohackers, and patients as